Kontent qismiga oʻtish

Fluoressensiya

Vikipediya, erkin ensiklopediya
Fluoressent minerallari ultrabinafsha ta'sirida ko'rinadigan yorug'lik chiqaradi.
Fluoressent dengiz organizmlari
Qora yorug'lik teatri ishlab chiqarishida ishlatiladigan fluoressent kiyimlar, Praga

Fluoressensiya - yorug'lik yoki boshqa elektromagnit nurlanishni yutgan moddaning yorug'lik chiqishi. Bu luminesansning bir shakli. Ko'pgina hollarda, chiqarilgan yorug'lik uzoqroq to'lqin uzunligiga ega va shuning uchun so'rilgan nurlanishdan kamroq foton energiyasi . Fluoressensiyaning ko'zga tashlanadigan misoli, so'rilgan nurlanish elektromagnit spektrning ultrabinafsha mintaqasida (inson ko'ziga ko'rinmas), chiqarilgan yorug'lik esa ko'rinadigan hududda boʻlganda paydo bo'ladi; bu floresan moddaga faqat ultrabinafsha nurlar ta'sirida ko'rish mumkin boʻlgan aniq rang beradi. Fluoressent materiallar nurlanish manbai to'xtagandan so'ng deyarli darhol porlashni to'xtatadi, fosforli materiallardan farqli o'laroq, bir muncha vaqt yorug'lik chiqaradi.

Fluoressensiyaning mineralogiya, gemologiya, tibbiyot, kimyoviy sensorlar ( flüoresans spektroskopiyasi ), lyuminestsent yorliqlash, bo'yoqlar, biologik detektorlar, kosmik nurlarni aniqlash, vakuumli lyuminestsent displeylar va katod nurlari quvurlari kabi ko'plab amaliy qo'llanilishi mavjud. Uning eng keng tarqalgan kundalik qo'llanilishi lyuminestsent lampalar va LED lampalarda bo'lib, ularda lyuminestsent qoplamalar UV yoki ko'k nurni uzoqroq to'lqin uzunliklariga aylantiradi, natijada oq yorug'lik hatto an'anaviy, lekin energiya tejamkor akkor chiroqlardan farq qilmaydi. chiroq .

Fluoressensiya tabiatda ba'zi minerallarda va hayotning barcha qirolliklarida ko'plab biologik shakllarda tez-tez uchraydi. Ikkinchisini biofluoressensiya deb atash mumkin, bu floroforning tirik organizmning bir qismi ekanligini yoki undan olinganligini ko'rsatadi (noorganik bo'yoq yoki dog ' o'rniga). Ammo fluoressensiya ko'p hollarda sun'iy ravishda sintezlanishi mumkin boʻlgan o'ziga xos kimyoviy moddalar tufayli yuzaga kelganligi sababli, moddaning o'zini fluoressent deb ta'riflash kifoya.

Narra daraxti ( Pterocarpus indicus ) yog'ochidan tayyorlangan chashka, uning lyuminestsent eritmasi Lignum nephriticum solingan kolba yonida.
Matlalin, Eysenhardtia polystachya daraxtining yog'ochidagi floresan moddasi

Fluoressensiyaning dastlabki kuzatuvi 1560 yilda Bernardino de Sahagun tomonidan va 1565 yilda Nikolas Monardes tomonidan lignum nephriticum ( lotincha "buyrak yog'ochi") deb nomlanuvchi infuzionda tasvirlangan. U ikkita daraxt turi, Pterocarpus indicus va Eysenhardtia polystachya daraxtidan olingan. [1][2][3][4] Ushbu floresans uchun javob beradigan kimyoviy birikma matlalin bo'lib, bu yog'ochda joylashgan flavonoidlardan birining oksidlanish mahsulotidir. [1]

1819-yilda ED Klark [5] va 1822-yilda Rene Just Haüy [lower-alpha 1] ftoritlarda flüoresansni tasvirlagan, ser Devid Bryuster 1833-yilda xlorofill hodisasini tasvirlagan [7] va ser Jon Xerschel 1845-yilda kinin uchun xuddi shunday qilgan. [8][9]

FLYUORESSENSIYA (flyuorit va lot. escent — kuchsiz taʼsirni ifodalovchi suffiks) , flyuoressensiya — qisqa vaqtda soʻnadigan lyuminissensiya. Odatda, flyuoressensiya atom va molekulalarning spontan kvant oʻtishlarida sodir boʻladi, shuning uchun fluoressensiya davomiyligi atom va molekulalarning uygʻongan holatda yashash vaqti bilan aniqlanadi (man etilgan utishlar holida fluoressensiya davomiyligi anchagina katta boʻlishi mumkin). Fluoressensiya yordamida moddalar strukturasi va ularda yuz beradigan fizik jarayonlar oʻrganiladi. Fluoressensiyadan lyuminessent analiz, chaqnovchi sanagichlar, defektoskopiya, mikrobiologiya, tibbiyot, biofizika va hokazo larda foydalaniladi.

Fluorescence occurs when an excited molecule, atom, or nanostructure, relaxes to a lower energy state (usually the ground state) through emission of a photon without a change in electron spin. When the initial and final states have different multiplicity (spin), the phenomenon is termed phosphorescence.

In each case the photon energy is proportional to its frequency according to , where is Planck's constant.

Kvant rentabelligi

[tahrir | manbasini tahrirlash]

Flyuroessensiya kvant rentabelligi flyuroessensiya jarayonining samaradorligini beradi. U chiqarilgan fotonlar sonining so'rilgan fotonlar soniga nisbati sifatida aniqlanadi. [10] (p 10) [11]

Maksimal mumkin boʻlgan floresan kvant rentabelligi 1,0 (100%); Har bir so'rilgan foton chiqadigan fotonga olib keladi. Kvant rentabelligi 0,10 boʻlgan birikmalar hali ham juda lyuminestsent hisoblanadi. Floresansiyaning kvant rentabelligini aniqlashning yana bir usuli qo'zg'atilgan holatning parchalanish tezligidir:

qayerda nurlanishning spontan emissiya tezligi konstantasi va

qayerda vaqtdagi qo'zg'aluvchan holat molekulalarining kontsentratsiyasi , boshlang'ich konsentratsiyasi hisoblanadi va <span about="#mwt145" class="mwe-math-element" data-mw="{&quot;name&quot;:&quot;math&quot;,&quot;attrs&quot;:{},&quot;body&quot;:{&quot;extsrc&quot;:&quot;\\Gamma&quot;}}" id="8" typeof="mw:Extension/math"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img alt="\Gamma" aria-hidden="true" class="mwe-math-fallback-image-inline" data-cx="{&quot;adapted&quot;:false}" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;"></span> yemirilish tezligi yoki floresans umrining teskarisi. Bu eksponensial parchalanish misolidir. Har xil radiatsiyaviy va radiatsiyaviy bo'lmagan jarayonlar qo'zg'aluvchan holatni yo'q qilishi mumkin. Bunday holda, umumiy parchalanish tezligi barcha stavkalar yig'indisidir:

Flyuroessensiya

[tahrir | manbasini tahrirlash]
UB nurlari ostida yigirma dollarlik lyuminestsent himoya tasmasi
Flyuroessent dengiz baliqlari

Sayoz suvda yashovchi suyakli baliqlar rang-barang muhitda yashashi tufayli, odatda, yaxshi rang ko'rish qobiliyatiga ega. Shunday qilib, sayoz suv baliqlarida qizil, to'q sariq va yashil floresans, ayniqsa, hodisaning katta fenotipik farqini hisobga olgan holda, o'ziga xosliklar bilan aloqa vositasi bo'lib xizmat qiladi. [12]

Akulalar, kaltakesaklar, chayonlar, yirtqich baliqlar va yassi baliqlar kabi floresans ko'rsatadigan ko'plab baliqlar ham sariq ko'z ichi filtrlariga ega. [13] Ba'zi baliqlarning linzalari va shox pardasidagi sariq ko'z ichi filtrlari uzoq o'tkazuvchan filtr vazifasini bajaradi. Ushbu filtrlar boshqa baliqlar va yirtqichlar uchun ko'rinmaydigan vizual kontrastni va naqshlarni kuchaytirish uchun floresansni tasavvur qilish va undan foydalanish imkonini beradi. [12] Floresansiyani ko'rish uchun zarur boʻlgan sariq ko'z ichi filtrlariga ega baliqlar uning a'zolaridan keladigan yorug'lik signalidan foydalanishi mumkin. Floresan naqshlari murakkab kamuflyajga ega boʻlgan sirli naqshli baliqlarda ayniqsa mashhur edi. Ushbu nasllarning ko'pchiligi, shuningdek, bunday naqshlarni ko'rishga imkon beradigan sariq rangli uzoq o'tkazuvchi ko'z ichi filtrlariga ega. [13]

Ikki turdagi akulalarda yangi florofor tasvirlangan, bunda bromlangan triptofan-kinurenin kichik molekula metabolitlarining tavsiflanmagan guruhi tufayli yuzaga kelgan. [14]

Floresans mercanda turli xil funktsiyalarni bajaradi. Marjonlardagi lyuminestsent oqsillar yorug'likning yaroqsiz to'lqin uzunliklarini mercan simbiotik suvo'tlari fotosintezni amalga oshirishga qodir boʻlganlarga aylantirish orqali fotosintezga hissa qo'shishi mumkin. [15] Bundan tashqari, oqsillar soni o'zgarishi mumkin, chunki ko'proq yoki kamroq yorug'lik fotoaklimatsiya vositasi sifatida mavjud bo'ladi. [16] Xuddi shunday, bu lyuminestsent oqsillar fotosintez natijasida hosil boʻlgan kislorod radikallarini yo'q qilish uchun antioksidant xususiyatlarga ega bo'lishi mumkin. [17] Va nihoyat, fotosintezni modulyatsiya qilish orqali lyuminestsent oqsillar mercanning fotosintetik alg simbiontlari faoliyatini tartibga solish vositasi sifatida ham xizmat qilishi mumkin. [18]

Aequoria victoria, GFP bilan mashhur biofloresan meduza
UB nurlari ostida lyuminestsent polka-nuqtali daraxt qurbaqasi
Floresan chayon
Aragonitning floresansi
Mikroskop ostida o'ziga xos hujayra komponentlarini belgilovchi uchta alohida kanalga ega endotelial hujayralar

Shuningdek qarang

[tahrir | manbasini tahrirlash]

 

  1. 1,0 1,1 Acuña, A. Ulises; Amat-Guerri, Francisco; Morcillo, Purificación; Liras, Marta; Rodríguez, Benjamín (2009). "Structure and formation of the fluorescent compound of lignum nephriticum". Organic Letters 11 (14): 3020–3023. doi:10.1021/ol901022g. PMID 19586062. Archived from the original on 28 July 2013. https://web.archive.org/web/20130728224629/http://202.127.145.151/siocl/siocl_0001/HHJdatabank/090707ol-6.pdf. 
  2. Safford, W.E.Lignum nephriticum“, . Annual report of the Board of Regents of the Smithsonian Institution. Washington, DC: U.S. Government Printing Office, 1916 — 271–298-bet. 
  3. Valeur, B.; Berberan-Santos, M.R.N. (2011). "A brief history of fluorescence and phosphorescence before the emergence of quantum theory". Journal of Chemical Education 88 (6): 731–738. doi:10.1021/ed100182h. https://archive.org/details/sim_journal-of-chemical-education_2011-06_88_6/page/731. 
  4. Muyskens, M.; Vitz, Ed (2006). "The fluorescence of lignum nephriticum: A flash back to the past and a simple demonstration of natural substance fluorescence". Journal of Chemical Education 83 (5): 765. doi:10.1021/ed083p765. https://archive.org/details/sim_journal-of-chemical-education_2006-05_83_5/page/765. 
  5. Clarke, E.D. (1819). "Account of a newly discovered variety of green fluor spar, of very uncommon beauty, and with remarkable properties of colour and phosphorescence". The Annals of Philosophy 14: 34–36. Archived from the original on 17 January 2017. https://web.archive.org/web/20170117092607/https://books.google.com/books?id=KWc7AQAAIAAJ&pg=PA34. "The finer crystals are perfectly transparent. Their colour by transmitted light is an intense emerald green; but by reflected light, the colour is a deep sapphire blue." 
  6. 6,0 6,1 Haüy, R.J.. Traité de Minéralogie, 2nd, Bachelier and Huzard, 1822 — 512-bet. 
  7. Brewster, D. (1834). "On the colours of natural bodies". Transactions of the Royal Society of Edinburgh 12 (2): 538–545, esp. 542. doi:10.1017/s0080456800031203. Archived from the original on 17 January 2017. https://web.archive.org/web/20170117120622/https://books.google.com/books?id=I_UQAAAAIAAJ&pg=PA538.  On page 542, Brewster mentions that when white light passes through an alcohol solution of chlorophyll, red light is reflected from it.
  8. Herschel, J. (1845). "On a case of superficial colour presented by a homogeneous liquid internally colourless". Philosophical Transactions of the Royal Society of London 135: 143–145. doi:10.1098/rstl.1845.0004. Archived from the original on 24 December 2016. https://web.archive.org/web/20161224220539/https://books.google.com/books?id=GmwOAAAAIAAJ&pg=PA143. 
  9. Herschel, J. (1845). "On the epipŏlic dispersion of light, being a supplement to a paper entitled, "On a case of superficial colour presented by a homogeneous liquid internally colourless"". Philosophical Transactions of the Royal Society of London 135: 147–153. doi:10.1098/rstl.1845.0005. Archived from the original on 17 January 2017. https://web.archive.org/web/20170117093409/https://books.google.com/books?id=GmwOAAAAIAAJ&pg=PA147. 


  10. Lakowicz, Joseph R.. Principles of Fluorescence Spectroscopy. Kluwer Academic / Plenum Publishers, 1999. ISBN 978-0-387-31278-1. 
  11. Valeur, Bernard. Molecular Fluorescence: Principles and applications. Wiley-VCH, 2012 — 64-bet. ISBN 978-3-527-32837-6. 
  12. 12,0 12,1 Sparks, J. S.; Schelly, R. C.; Smith, W. L.; Davis, M. P.; Tchernov, D.; Pieribone, V. A.; Gruber, D. F. (2014). Fontaneto, Diego. ed. "The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon". PLOS ONE 9 (1): e83259. doi:10.1371/journal.pone.0083259. PMID 24421880. PMC 3885428. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885428. 
  13. 13,0 13,1 Heinermann, P (2014-03-10). "Yellow intraocular filters in fishes". Experimental Biology 43 (2): 127–147. PMID 6398222. 
  14. Park, Hyun Bong; Lam, Yick Chong; Gaffney, Jean P.; Weaver, James C.; Krivoshik, Sara Rose; Hamchand, Randy; Pieribone, Vincent; Gruber, David F. et al. (2019-09-27). "Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism" (en). iScience 19: 1291–1336. doi:10.1016/j.isci.2019.07.019. ISSN 2589-0042. PMID 31402257. PMC 6831821. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=6831821. 
  15. Salih, A.; Larkum, A.; Cox, G.; Kühl, M.; Hoegh-Guldberg, O. (2000). "Fluorescent pigments in corals are photoprotective". Nature 408 (6814): 850–3. doi:10.1038/35048564. PMID 11130722. Archived from the original on 22 December 2015. https://web.archive.org/web/20151222103614/https://www.researchgate.net/publication/12197663_Fluorescent_Pigments_in_Corals_are_Photoprotective. 
  16. Roth, M. S.; Latz, M. I.; Goericke, R.; Deheyn, D. D. (2010). "Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation". Journal of Experimental Biology 213 (21): 3644–3655. doi:10.1242/jeb.040881. PMID 20952612. 
  17. Bou-Abdallah, F.; Chasteen, N. D.; Lesser, M. P. (2006). "Quenching of superoxide radicals by green fluorescent protein". Biochimica et Biophysica Acta (BBA) - General Subjects 1760 (11): 1690–1695. doi:10.1016/j.bbagen.2006.08.014. PMID 17023114. PMC 1764454. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764454. 
  18. Field, S. F.; Bulina, M. Y.; Kelmanson, I. V.; Bielawski, J. P.; Matz, M. V. (2006). "Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals". Journal of Molecular Evolution 62 (3): 332–339. doi:10.1007/s00239-005-0129-9. PMID 16474984. https://archive.org/details/sim_journal-of-molecular-evolution_2006-03_62_3/page/n91. 

Andoza:Artificial light sources

  1. Haüy (1822)[6] merely repeats Clarke's observation regarding the colors of the specimen of fluorite which Clarke had examined. Haüy calls fluorite chaux fluatée:
    "... violette par réflection, et verdâtre par transparence au Derbyshire."
    [(the color of fluorite is) violet by reflection, and greenish by transmission in Derbyshire (specimens)][6]:
  • Ushbu maqola Mirzo Ulug'bek nomidagi O'zbekiston Milliy universitieti Fizika fakulteti talabasi Abbos Jonishev tomonidan Wikita'lim loyihasi doirasida ingliz tilidan tarjima qilindi.