Kontent qismiga oʻtish

Analitik geometriya

Vikipediya, erkin ensiklopediya

Analitik geometriya — geome-triya boʻlimi; unda sodda geometrik ob-razlar (nuqtalar, toʻgʻri chiziqlar, tekisliklar, ikkinchi tartibli egri chiziqlar va sirtlar) koordinatalar usuli asosida algebraik vositalar bilan oʻrganiladi. Koordinatalar usulining mohiyati quyidagicha: a tekislikda oʻza-ro per-pendikulyar Ox va Ou toʻgʻri chiziqlarni chizamiz, ularda musbat yoʻnalishlarni, koordinata boshi O nuqtani va masshtab birligi ye ni tanlab olamiz. Bu holda a tekislikda toʻgʻri burchakli Dekart koor-dinatalar tizimi Oxu berilgan deyila-di; Oxabssissalar oʻqi, Ou esa ordina-talar oʻqi deyiladi. Tekislikdagi ixti-yoriy M nuqtaning holati OMx va OMu kesmalarning (tegishli ishora bilan olin-gan) uzunliklari x va u bilan bir qiymatli aniqlanadi. Abssissasi x va ordinatasi u boʻlgan M nuqta M(x, u) kabi belgilanadi. Shua tekislikda biror chiziq olingan boʻlsa, unga tegishli nuqtalarning va faqat shu nuqtalarning koordinatalari 463Gʻ(x, u)=O tenglamani qanoatlantirsa, bu tenglama L chiziq tenglamasi deyiladi. Tekislikdagi A.g .da toʻgʻri chiziqlar, ikkinchi tartibli egri chiziqlar (el-lips, parabola, giperbola) batafsil oʻrganiladi. Fazoda ham Dekart koor-dinatalar tizimi kiritiladi va turli chiziqlar, tekisliklar, ikkinchi tartib-li sirtlar ularning tenglamalari vosi-tasida oʻrganiladi. A.g .ning asosiy gʻoyasi R. Dekartnt „Geometriya“ (1637-yil) kitobida birinchi marta toʻla bayon etilgan. A.g. taraqqiyotiga yana P. Ferma, G. Leybnits, I. Nyuton, L. Eyler katta hissa qoʻshganlar. A.g. metodlari matematika, mexanika, fizika va boshqa fanlarda keng qoʻllanadi. Tursun Azlarov.

  • OʻzME. Birinchi jild. Toshkent, 2000-yil